Linear Algebra (GE-2)

Vikendra Singh




Lecture 1

Vikendra Singh Linear Algebra (GE-2) 2/93



Vector Space: Let V be an arbitrary nonempty set
of objects, together with two operations namely
addition (denoted as @) and scalar
multiplication(denoted as ©), is said to be a (real)
vector space if for every u,v,w in VV and for every
a,b € R the following properties hold:
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Vector Space: Let V be an arbitrary nonempty set
of objects, together with two operations namely
addition (denoted as @) and scalar
multiplication(denoted as ©), is said to be a (real)
vector space if for every u,v,w in VV and for every
a,b € R the following properties hold:

Q@ uaveV (Closed under vector addition)
Q@ uov=vapu (Commutativity)
Q Uav)ow=ud (veow) (Associativity)

© There exists an element 0 € V, called a zero
vector, such that u @ 0 = u (Existence of
additive identity)
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©@ Foreachuc V,thereisanelement —u eV
such that u @ (—u) = 0 (Existence of additive
inverse)
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©@ Foreachuc V,thereisanelement —u eV
such that u @ (—u) = 0 (Existence of additive
inverse)

© o« ©u eV (Closed under scalar multiplication)
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©@ Foreachuc V,thereisanelement —u eV
such that u @ (—u) = 0 (Existence of additive
inverse)

© o« ©u eV (Closed under scalar multiplication)

Q@ coudv)=(aou)® (aeVv) (Distributivity)
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©@ Foreachuc V,thereisanelement —u eV
such that u @ (—u) = 0 (Existence of additive
inverse)

@ o ®u c V (Closed under scalar multiplication)
Q@eouUdv)=(acou)®(aeV) (Distributivity)
Q w+bd)ou=acusbou (Distributivity)
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©@ Foreachuc V,thereisanelement —u eV
such that u @ (—u) = 0 (Existence of additive
inverse)

@ o ®u c V (Closed under scalar multiplication)
Q@eouUdv)=(acou)®(aeV) (Distributivity)
Q w+bd)ou=acusbou (Distributivity)

Q (ab)ou=a0o (boOU)

Q@ 1ou=u
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©@ Foreachuc V,thereisanelement —u eV
such that u @ (—u) = 0 (Existence of additive
inverse)

@ o ®u c V (Closed under scalar multiplication)
Q@ coudv)=(aou)® (aeVv) (Distributivity)
Q w+bd)ou=acusbou (Distributivity)

Q@ (w)ou=ao (bou)

Q@ 1ou=u.
The objects of a vector space V' are called vectors.
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Note that the set V = {0} is a vector space with
respect to
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Note that the set V = {0} is a vector space with
respect to

@ vector addition04 0 =0

@ scalar multiplicationa ®0 =0 foralla € R
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Note that the set VV = {0} is a vector space with
respect to

@ vector addition04 0 =0

@ scalar multiplicationa ®0 =0 foralla € R

The vector space V = {0} is called the zero (trivial)
vector space.
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Example 1: The set R of real numbers is a vector
space with respect to the following operations:

@ U® Vv =u-+V (vector addition)
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I
Example 1: The set R of real numbers is a vector
space with respect to the following operations:

@ U® Vv =u-+V (vector addition)
@ a ® U = au (scalar multiplication)
forall a,u,v € R.

Question: Does the set R™ of positive real numbers
form a vector space under the above defined vector
addition @& and scalar multiplication ®?
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Example 2: The set R* of a positive real numbers is
a vector space with respect to the following
operations:

@ U@V =u-V (vector addition)
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Example 2: The set R* of a positive real numbers is
a vector space with respect to the following
operations:

@ UdV=u-v (vector addition)
@ a ® U = u“ (scalar multiplication)
foralla e Randu,v e R*.
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Example 3: The set R? = {(z1,29) | 71,22 € R} is a
vector space with respect to the following vector
addition & and scalar multiplication ©:

@ (v1,72) D (y1,92) = (T1 + Y1, 2 + Y2)
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@ a® (r1,x2) = (axy, axs)

forall a € R and (21, z2), (y1,12) € R
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Example 3: The set R? = {(z1,29) | 71,22 € R} is a
vector space with respect to the following vector
addition & and scalar multiplication ©:

@ (w1, @2) ® (y1,¥2) = (21 + Y1, 22 + 42)
@ a® (r1,x2) = (axy, axs)

forall a € R and (21, z2), (y1,12) € R

Question: Does R? form a vector space under the
above defined vector addition and the following
scalar multiplication

a® (1'1, 1'2) = (0, CLI’Q)

forall a € R and (xq, z5) € R
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Soln. of Example 3: Let u = (z1,22), V= (y1, ¥2)
and w = (z1,2) € R?and a,b € R.

@ Closure Property:
uov
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Soln. of Example 3: Let u = (z1,22), V= (y1, ¥2)
and w = (z1,2) € R?and a,b € R.

@ Closure Property:
UDV = (21,29) D (y1,92)
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Soln. of Example 3: Let u = (z1,29), V= (y1,y2)
and w = (z1,2) € R?and a,b € R.

@ Closure Property:
UDV = (x1,29) D (y1,y2) = (21 + y1, 22 + y2) € R2

@ Commutative Property:
UDV = (21 +y1, 22+ y2) = (Y1 +21,Y2+ T2)
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Soln. of Example 3: Let u = (z1,29), V= (y1,y2)
and w = (z1,2) € R?and a,b € R.
@ Closure Property:
UDV = (z1,22) D (y1,42) = (z1 + y1, 22 + y2) € R

@ Commutative Property:
UDV = (z1+y1, T2+ y2) = Y1+ 21,9+ T2)
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I
Soln. of Example 3: Let u = (z1,29), V= (y1,y2)
and w = (z1,2) € R?and a,b € R.
@ Closure Property:
UDV = (z1,22) D (y1,42) = (z1 + y1, 22 + y2) € R

@ Commutative Property:
UBV=(z1+y,z2+1y) = (1 + 21,92 + 22)
(commutativity of R under addition)
= (y1,12) @ (21, 22)
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Soln. of Example 3: Let u = (z1,29), V= (y1,y2)
and w = (z1,2) € R?and a,b € R.
@ Closure Property:
UBV = (21,22) ® (Y1,92) = (T1 4+ Y1, 12 + y2) € R%.
@ Commutative Property:
UDV = (21 +y1,T2+y2) = (y1+ 21,92+ 72)
(commutativity of R under addition)

= (y1,92) ® (21, 22)
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Soln. of Example 3: Let u = (z1,29), V= (y1,y2)
and w = (z1,2) € R?and a,b € R.
@ Closure Property:
UDV = (z1,22) D (y1,42) = (z1 + y1, 22 + y2) € R

@ Commutative Property:
UBV=(z1+y,22+y2) = Y1 +T1,y2+ 22)
(commutativity of R under addition)
= (y1,92) @ (21, 72)
=Vodu
@ Associative Property:
(uov)eow
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Soln. of Example 3: Let u = (z1,29), V= (y1,y2)
and w = (z1,2) € R?and a,b € R.
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Soln. of Example 3: Let u = (z1,29), V= (y1,y2)
and w = (z1,2) € R?and a,b € R.

@ Closure Property:
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=Vodu
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(uev)ew = ((z1+y1)+ 21, (T2 + y2) + 22)
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Vikendra Singh Linear Algebra (GE-2) 9/93



Soln. of Example 3: Let u = (z1,29), V= (y1,y2)
and w = (z1,2) € R?and a,b € R.

@ Closure Property:
UDV = (x1,29) D (y1,y2) = (21 + y1, 22 + y2) € R2

@ Commutative Property:
UDV = (21 +y1, 22 +¥y2) = (y1+21,y2 + T2)
(commutativity of R under addition)
= (y1,42) ® (21, z2)
=Vvou
@ Associative Property:
uev)dw = ((x1+y1)+ 21, (T2 + y2) + 22)
= (1 + (y1 + 21), 22 + (Y2 + 22))
(associativity of R under addition)
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I
= (951,502) D (yl + 21,92 + 22)
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= (v1,72) ® (y1 + 21, Y2 + 22)
= (21, 22) @ (Y1, 12) @ (21, 22))
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= (w1, 72) ® (Y1 + 21, Y2 + 22)
= (z1,22) ® ((y1,92) ® (21, 22))
ud (vow)
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= (z1,22) ® (Y1 + 21,2 + 22)
= (3317'7;2) D ((y17y2) D (Zh ZQ))
=ud(Vow)

@ Existence of additive identity (zero vector):
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= (z1,22) ® (Y1 + 21,2 + 22)
= (21,22) & ((y1,92) & (21, 22))
=ud(Vow)
© Existence of additive identity (zero vector): For
any u = (z,r,) € R? there exists 0 = (0,0) € R?
such that
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= (21,22) ® (y1 + 21, y2 + 22)
= (21,22) & ((y1,92) & (21, 22))
=ud(Vow)
© Existence of additive identity (zero vector): For
any u = (z,r,) € R? there exists 0 = (0,0) € R?
such that
uo 0=
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= (21,22) ® (y1 + 21, y2 + 22)
= (21,22) & ((y1,92) & (21, 22))
=ud(Vow)
© Existence of additive identity (zero vector): For
any u = (z,r,) € R? there exists 0 = (0,0) € R?
such that
uo 0= (5(?1,.%2) S5, (0,0)
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= (21,22) ® (y1 + 21, y2 + 22)
= (21,22) & ((y1,92) & (21, 22))
=ud(Vow)
© Existence of additive identity (zero vector): For
any u = (z,r,) € R? there exists 0 = (0,0) € R?
such that
U@O:(xl,xg)@(o 0) (SL’l—i—O $2+O)
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= (21,22) ® (y1 + 21, y2 + 22)

= (21,22) & ((y1,92) & (21, 22))

=ud(Vow)

© Existence of additive identity (zero vector): For
any u = (z,r,) € R? there exists 0 = (0,0) € R?
such that
U@O:(xl,xg)@(o 0) (SL’l—i—O $2+O)
= (21, 72)
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= (21,22) ® (y1 + 21, y2 + 22)
= (21,22) & ((y1,92) & (21, 22))
=ud(Vow)
© Existence of additive identity (zero vector): For
any u = (z,r,) € R? there exists 0 = (0,0) € R?
such that
uo o= (5(?1,.%2) D (0,0) = (Il —|—0,ZCQ+O)
= \T1, 5132)
=u
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= (21,22) ® (y1 + 21, y2 + 22)
= (21, 22) @ ((y1,92) ® (21, 22))
=ud(Vow)
© Existence of additive identity (zero vector): For
any u = (z,r,) € R? there exists 0 = (0,0) € R?
such that
U@O:(xl,xg)@(o 0) ($1+0 $2+O)
(xlv :CZ)
=u
@ Existence of additive inverse:
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= (21,22) ® (y1 + 21, y2 + 22)
= (21,22) & ((y1,92) & (21, 22))
=ud(Vow)
© Existence of additive identity (zero vector): For
any u = (z,r,) € R? there exists 0 = (0,0) € R?
such that
U@O:(Il,xg)@(o 0) (SL’l—i—O $2+O)
= (21, 72)
=u
@ Existence of additive inverse: For each
U = (x1,22) € R? there exists —u = (—x1, —15) in
R? such that
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= (w1, 72) ® (Y1 + 21, Y2 + 22)
= (21, 72) D ((y1,12) © (21, 22))
=ud(Vow)
© Existence of additive identity (zero vector): For
any u = (z,r,) € R? there exists 0 = (0,0) € R?
such that
uo 0= (z1,22) ®(0,0) = (1 + 0,22+ 0)
= (21, 72)
=u
@ Existence of additive inverse: For each
U = (x1,22) € R? there exists —u = (—x1, —15) in
R? such that
U (—u) = (21, 22) ® (—21, —2)
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= (21,22) ® (y1 + 21, y2 + 22)
= (21,22) & ((y1,92) & (21, 22))
=ud(Vow)
© Existence of additive identity (zero vector): For
any u = (z,r,) € R? there exists 0 = (0,0) € R?
such that
U@O:(Il,xg)@(o 0) (SL’l—i—O $2+O)
= (21, 72)
=u
@ Existence of additive inverse: For each
U = (x1,22) € R? there exists —u = (—x1, —15) in
R? such that
u® (—u) = (21, 22) ® (—21, —2)
= (21 + (=71), 22 + (—22))
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= (21,22) ® (y1 + 21, y2 + 22)
= (21,22) & ((y1,92) & (21, 22))
=ud(Vow)
© Existence of additive identity (zero vector): For
any u = (z,r,) € R? there exists 0 = (0,0) € R?
such that
U@O:(Il,xg)@(o 0) (SL’l—i—O $2+O)
= (21, 72)
=u
@ Existence of additive inverse: For each
U = (x1,22) € R? there exists —u = (—x1, —15) in
R? such that
u® (—u) = (21, 22) ® (—21, —2)
= (z1+ (—21), 22 + (—22)) = (0,0)
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= (21,22) ® (y1 + 21, y2 + 22)
= (21,22) & ((y1,92) & (21, 22))
=ud(Vow)
© Existence of additive identity (zero vector): For
any u = (z,r,) € R? there exists 0 = (0,0) € R?
such that
U@O:(Il,xg)@(o 0) (SL’l—i—O $2+O)
= (21, 72)
=u
@ Existence of additive inverse: For each
U = (x1,22) € R? there exists —u = (—x1, —15) in
R? such that
u® (—u) = (21, 22) ® (—21, —2)
= (21 + (—21), 22+ (—22)) =(0,0)=0
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@ Closure Property of scalar multiplication:
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@ Closure Property of scalar multiplication:
a®u

Vikendra Singh Linear Algebra (GE-2) 11/93



@ Closure Property of scalar multiplication:
a®OU= CL@(SEl,I'Q)
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@ Closure Property of scalar multiplication:
a®OU=a® (x, 1) = (axy,axs)
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@ Closure Property of scalar multiplication:
a®OU=a® (z1,12) = (az1, azxs)€ R
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@ Closure Property of scalar multiplication:
a®OU=a® (z1,12) = (az1, azxz)€ R% Thus, R?is
closed under scalar multiplication.
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@ Closure Property of scalar multiplication:
a®OU=a® (z1,12) = (az1, azxz)€ R% Thus, R?is
closed under scalar multiplication.

@ Distributivity over vector addition:
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@ Closure Property of scalar multiplication:
a®OU=a® (z1,12) = (az1, azxz)€ R% Thus, R?is
closed under scalar multiplication.

@ Distributivity over vector addition:
a®(UdV)
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@ Closure Property of scalar multiplication:
a®OU=a® (z1,12) = (az1, azxz)€ R% Thus, R?is
closed under scalar multiplication.

@ Distributivity over vector addition:
a®UaV) =a0 ((z1,22) ® (Y1,92))
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@ Closure Property of scalar multiplication:
a®OU=a® (z1,12) = (az1, azxz)€ R% Thus, R?is
closed under scalar multiplication.
@ Distributivity over vector addition:
a®UaV) =a0 ((z1,22) ® (Y1,92))
=a© (z1+ Y1, T2 + o)
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@ Closure Property of scalar multiplication:
a®OU=a® (z1,12) = (az1, azxz)€ R% Thus, R?is
closed under scalar multiplication.

@ Distributivity over vector addition:
a®UaV) =a0 ((z1,22) ® (Y1,92))

=a© (z1+ Y1, T2 + o)
= (a(z1 +y1), a(z2 + y2))
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@ Closure Property of scalar multiplication:
a®OU=a® (z1,12) = (az1, azxz)€ R% Thus, R?is
closed under scalar multiplication.

@ Distributivity over vector addition:
a®UaV) =a0 ((z1,22) ® (Y1,92))

=a© (z1+ Y1, T2 + o)
= (a(z1 +y1), a(z2 + y2))
= (ax1 + ayi, axs + ays) (distributivity in R)
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@ Closure Property of scalar multiplication:
a®OU=a® (z1,12) = (az1, azxz)€ R% Thus, R?is
closed under scalar multiplication.

@ Distributivity over vector addition:
a®UaV) =a0 ((z1,22) ® (Y1,92))

=a© (z1+ Y1, T2 + o)
= (a(z1 +y1), a(z2 + y2))

= (ax1 + ayi, axs + ays) (distributivity in R)
= (ax1,azs) @ (ayr, ays)
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@ Closure Property of scalar multiplication:
a®OU=a® (z1,12) = (az1, azxz)€ R% Thus, R?is
closed under scalar multiplication.

@ Distributivity over vector addition:
a®UaV) =a0 ((z1,22) ® (Y1,92))

=a© (z1+ Y1, T2 + o)
= (a(z1+y1), a(z2 + 12))
= (ax1 + ayi, axs + ays) (distributivity in R)
= (ax1,azs) @ (ayr, ays)
= (2 ® (21,72)) ® (a © (y1,12))
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@ Closure Property of scalar multiplication:
a®OU=a® (z1,12) = (az1, azxz)€ R% Thus, R?is
closed under scalar multiplication.

@ Distributivity over vector addition:
a®UaV) =a0 ((z1,22) ® (Y1,92))

=a® (r1+y1, 2+ 1)
= (a(z1+y1), a(z2 + 12))

= (ax1 + ayi, axs + ays) (distributivity in R)
= (ax1,azs) @ (ayr, ays)
= (a® (21,72)) ® (a © (y1,12))
=(aOUu) @ (a®V)
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@ Distributivity over scalar addition:
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@ Distributivity over scalar addition:
(a+b)ou =(a+b) O (r1,22)
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@ Distributivity over scalar addition:
(a+b)ou =(a+b) O (r1,22)
= ((a+b)x1, (a+ b)xy)
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@ Distributivity over scalar addition:
(a+b)ou =(a+0b)© (x1,22)
= ((a +b)x1, (a + b)x2)
= (ax1 + bxy, axs + bxs) (distributivity in R)
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@ Distributivity over scalar addition:
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= (az1,ax2) ® (bxy, brs)
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@ Distributivity over scalar addition:
(a+b)ou =(a+0b)© (x1,22)
= ((a +b)x1, (a + b)x2)
= (ax1 + bxy, axs + bxs) (distributivity in R)
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= (a © (z1,22)) ® (b © (21, 72))
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= (ax1 + bxy, axs + bxs) (distributivity in R)
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@ Distributivity over scalar addition:
(a+b)ou =(a+0b)© (x1,22)
= ((a +b)x1, (a + b)x2)
= (ax1 + bxy, axs + bxs) (distributivity in R)

= (az1,ax2) ® (bxy, brs)
= (a© (z1,22)) ® (b © (21, 32))
=(a®U)® (bou)

Q (ab) ®u
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@ Distributivity over scalar addition:
(a+b)ou =(a+0b)© (x1,22)
= ((a +b)x1, (a + b)x2)
= (ax1 + bxy, axs + bxs) (distributivity in R)

= (az1,ax2) ® (bxy, brs)
= (a© (z1,22)) ® (b © (21, 32))
=(a®U)® (bou)

Q (ab)ou = (ab) ® (1, x2)
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@ Distributivity over scalar addition:
(a+b)ou =(a+0b)© (x1,22)
= ((a +b)x1, (a + b)x2)
= (ax1 + bxy, axs + bxs) (distributivity in R)

= (az1,ax2) ® (bxy, brs)
= (a © (z1,22)) ® (b © (21, 72))
=(a®U)® (bou)

Q (ab)ou = (ab) ® (1, x2)

— ((ab)z1, (ab)z)
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@ Distributivity over scalar addition:
(a+b)ou =(a+0b)© (x1,22)
= ((a +b)x1, (a + b)x2)
= (ax1 + bxy, axs + bxs) (distributivity in R)
= (az1,ax2) ® (bxy, brs)
= (a © (z1,22)) ® (b © (21, 72))
=(a®U)® (bou)
Q (ab)ou = (ab) ® (1, x2)
— ((ab)z, (ab)zy)
= (a(bz1), a(bxs))
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@ Distributivity over scalar addition:
(a+b)ou =(a+b) O (ry,x9)
= ((a+ b)z1, (a + b)xs)
= (ax1 + bxy, axs + bxs) (distributivity in R)
= (ax1,azs) @ (bxy, bxs)
= (a® (r1,22)) ® (b ©® (1, 29))
=(aoUu)® (bou)
= (ab) ® (1, x2)
= ((ab)z1, (ab)xs)
= (a(bx1), a(bzs))

(associativity of R under multiplication)

Q (ab) ®u
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@ Distributivity over scalar addition:
(a+b)ou =(a+0b)© (x1,22)
= ((a +b)x1, (a + b)x2)
= (ax1 + bxy, axs + bxs) (distributivity in R)
= (az1,ax2) ® (bxy, brs)
= (a© (z1,22)) ® (b © (21, 32))
=(aOUu) @ (bou)
Q (b)ou = (ab) © (21, 22)
— ((ab)a1, (ab)2)
= (a(bz1), a(bxs))
(associativity of R under multiplication)
=a® (bl‘l, bQTQ)
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@ Distributivity over scalar addition:
(a+b)ou =(a+0b)© (x1,22)
= ((a +b)x1, (a + b)x2)
= (ax1 + bxy, axs + bxs) (distributivity in R)
= (az1,ax2) ® (bxy, brs)
= (a© (z1,22)) ® (b © (21, 32))
=(aOUu) @ (bou)
Q (b)ou = (ab) © (21, 22)
— ((ab)a1, (ab)2)
= (a(bz1), a(bxs))
(associativity of R under multiplication)
=a® (bl‘l, bQTQ)
=a0® (bO (z1,22))
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Q 1ou=
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I
Q 1ou=10(21,19) =
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I
Q 1ou=10 (z1,22) = (1zy1, lay) =
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I
@ lou=106 (331,5[72) = (11’1, 1513’2) = (331,162) =
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NSNS
@ lou=106 (331,5[72) = (11’1, 1513’2) = (331,162) =u
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NSNS
@ lou=106 (331,5[72) = (1371, 1513’2) = (331,162) = Uu.

Thus R? is vector space under usual vector addition
and scalar multiplication.
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.
Exercise: Show that the set

Rz = {(5131,1’2) ’ T1,To € R}

is a vector space with respect to the following vector
addition & and scalar multiplication ©:

@ (z1,22) ® (v1,y2) = (v1+ w1 + 1,29 + y2 — 2)
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.
Exercise: Show that the set

Rz = {(5131,1’2) ’ T1,To € R}

is a vector space with respect to the following vector
addition & and scalar multiplication ©:

@ (r1,22) ® (y1,42) = (w1 + 11 + 1,20 + 2 — 2)
@ a® (r1,22) = (a1 +a — 1,ax9 — 2a + 2)
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I
Example 4: Consider the set

R" = {(x1,29,...,2,) : x; € R}.

Forany u,v € R" and a € R, define
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I
Example 4: Consider the set

R" = {(x1,29,...,2,) : x; € R}.

Forany u,v € R" and a € R, define

UDV= (21,22, ..,2) D (Y1,Y2,- -, Yn)
- (x1+ylvx2+y27"-7xn+yn)
a®U=(ary,ars,...,ax,).

Then R" is a vector space with respect to ¢ and ©.



I
Example 4: Consider the set

R" = {(x1,29,...,2,) : x; € R}.

Forany u,v € R" and a € R, define

UDV= (21,22, ..,2) D (Y1,Y2,- -, Yn)

a®U=(ary,ary,...,ax,).

Then R" is a vector space with respect to ¢ and ©.



I
Example 4: Consider the set

R" = {(x1,29,...,2,) : x; € R}.

Forany u,v € R" and a € R, define

UDV= (21,22, ..,2) D (Y1,Y2,- -, Yn)

Then R" is a vector space with respect to ¢ and ©.



I
Example 4: Consider the set

R" = {(x1,29,...,2,) : x; € R}.

Forany u,v € R" and a € R, define

UDV= (21,22, ..,2) D (Y1,Y2,- -, Yn)
- (x1+ylvx2+y27"-7xn+yn)
a®U=(ary,ars,...,ax,).

Then R" is a vector space with respect to ¢ and ©.
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I
Example 5: The set

an — {[aij]mxn | ;5 c R}

of all m x n matrices with real entries

Vikendra Singh Linear Algebra (GE-2) 16/93



I
Example 5: The set

an = {[aij]mxn | ;5 € R}

of all m x n matrices with real entries is a vector
space with respect to the following operations:

@ [Gijlmxn D@ [bijlmxn = [@ij + bijlmxn (vector addition)
@ a ©® [Gijlmxn = [aGijlmxn (scalar multiplication)

for all a € R and [aij]mxn, [0ijlmxn € Mmn-
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NSNS
Theorem 4.1.1: Let V be a vector space. Then for
everyu € V and k € R, we have

o kOV = OV

@ Ou=0y

@ (—l)u=—u

@ If ku=0y,thenk =0o0ru=0y.
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Lecture 2
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Definition: A nonempty subset W of a vector space
V' is said to be a subspace of V if W is itself a vector
space with respect to the same operations (vector
addition and scalar multiplication) of V.
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Definition: A nonempty subset W of a vector space
V' is said to be a subspace of V if W is itself a vector
space with respect to the same operations (vector
addition and scalar multiplication) of V.

Note that every vector space V has at least two
subspaces: {0} and V itself.
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Definition: A nonempty subset W of a vector space
V' is said to be a subspace of V if W is itself a vector
space with respect to the same operations (vector
addition and scalar multiplication) of V.

Note that every vector space V has at least two
subspaces: {0} and V itself. The subspace {0} is
known as zero (trivial) subspace.
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I
Example: The set

W ={(z,y) e R* |y = 0}

forms a vector space with respect to usual vector
addition and scalar multiplication in R2,
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I
Example: The set

W ={(z,y) e R* |y = 0}

forms a vector space with respect to usual vector
addition and scalar multiplication in R2. Thus, WV is a
subspace of R2.
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I
Example: The set

W ={(z,y) e R* |y = 0}

forms a vector space with respect to usual vector
addition and scalar multiplication in R2. Thus, WV is a
subspace of R2.

Question: Does the set

W={(z,y) eR* |z #y}

form a subspace of R??
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Theorem: A nonempty subset W of a vector space
V is a subspace of V if and only if the following
conditions hold:
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Theorem: A nonempty subset W of a vector space
V is a subspace of V if and only if the following
conditions hold:

@ Ifuandvare vectorsin W, thenu+visinW.

@ If k£ is a scalar and u is a vector in W, then ku is
in W.
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Theorem: A nonempty subset W of a vector space
V is a subspace of V if and only if the following
conditions hold:
@ Ifuandv are vectorsin W, thenu +visin W.
@ If kis a scalar and u is a vector in W, then ku is
in W.

In words, A nonempty subset I of a vector space
V' is a subspace of V' if and only if 1 is closed under
vector addition and scalar multiplication.
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Theorem: A nonempty subset W of a vector space
V is a subspace of V if and only if the following
conditions hold:
@ Ifuandv are vectorsin W, thenu +visin W.
@ If kis a scalar and u is a vector in W, then ku is
in W.

In words, A nonempty subset I of a vector space
V' is a subspace of V' if and only if 1 is closed under
vector addition and scalar multiplication.

Remark: If W is a subspace of a vector space V/,
then 0 € V.
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Exercise: Examine whether the following sets are
subspaces of the vector space R?.

o Wy ={(z,y,2) e R®| z > 0}.
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Exercise: Examine whether the following sets are
subspaces of the vector space R?.

o Wy ={(z,y,2) e R®| z > 0}.
@ Wo={(z,y,2) eR* |z +y+2z=0}.
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Exercise: Examine whether the following sets are
subspaces of the vector space R?.

o Wy ={(z,y,2) e R®| z > 0}.
@ Wo={(z,y,2) eR* |z +y+2z=0}.
0 W3 = {(x,y,z) € R3 | x:yQ}.
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Exercise: Examine whether the following sets are
subspaces of the vector space R?.

o Wy ={(z,y,2) e R®| z > 0}.

@ Wo={(z,y,2) eR* |z +y+2z=0}.
@ Wi ={(z,y,2) e R® |z =y*}.
(2,y,2)

@ Wy={(z,y,2) eR¥ |z +y+2z=2}
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Exercise: Examine whether the following sets are
subspaces of the vector space R?.

o Wy ={(z,y,2) e R®| z > 0}.

@ Wo={(z,y,2) eR* |z +y+2z=0}.

o Wgz{(x,y,z) E]R?’\x:yQ}.

@ Wy={(z,y,2) eR¥ |z +y+2z=2}
(z,y,2)

@ Wy ={(z,y,2) e R} | a? +y* + 22 = 1}.
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Exercise: Examine whether the following sets are
subspaces of the vector space My

@ W, ={A e My | Aissingular}.

@ Wy ={A € My | Ais nonsingular}.
@ Wy={A € My | Ais symmetric}.
@ Ws={A€ M| A?=A}.
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Results: Let W, and W, be two subspaces of vector
space V. Then
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Results: Let W, and W, be two subspaces of vector
space V. Then

@ their intersection i.e. W, N W is a subspace of
V.
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Results: Let W, and W, be two subspaces of vector
space V. Then

@ their intersection i.e. W, N W is a subspace of
V.

@ their sum, defined as
Wl +W2 = {w1 —+ w9 | wy € Wl,wg - WQ},

is a subspace of V.
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Results: Let W, and W, be two subspaces of vector
space V. Then

@ their intersection i.e. W, N W is a subspace of
V.

@ their union W; U W, need not be a subspace of
V.

@ their sum, defined as
Wl +W2 = {w1 —+ w9 | wy € Wl,wg - WQ},

is a subspace of V.
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I
Results: Let W, and W, be two subspaces of vector
space V. Then

@ their intersection i.e. W, N W is a subspace of
V.

@ their union W; U W, need not be a subspace of
V.

@ W, U Ws is subspace of V if and only if either
Wy C Wy or Wy C Wh.

@ their sum, defined as
Wl +W2 = {w1 —+ w9 | wy € Wl,wg - WQ},

is a subspace of V.
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Lecture 3
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Linear combination: Let VV be a vector space and
Vi,Vso,...,V, € V. Then a vector w € V is said to be
a linear combination of vi,v,, ... v, if
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Linear combination: Let VV be a vector space and
Vi,Vso,...,V, € V. Then a vector w € V is said to be
a linear combination of vi,v,, ... v, if

W = k1Vy + koVo + "‘—|-/<ZTV7«;
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Linear combination: Let VV be a vector space and
Vi,Vso,...,V, € V. Then a vector w € V is said to be
a linear combination of vi,v,, ... v, if

W=FKV+kVo+---+kV,; E(1<i<r)eR
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Linear combination: Let VV be a vector space and
Vi,Vso,...,V, € V. Then a vector w € V is said to be
a linear combination of vi,v,, ... v, if

W=FKV+kVo+---+kV,; E(1<i<r)eR

Example: The vector (3,4) is a linear combination of
(1,0) and (0, 1) in R2.
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Linear combination: Let VV be a vector space and
Vi,Vso,...,V, € V. Then a vector w € V is said to be
a linear combination of vi,v,, ... v, if

W=FKV+kVo+---+kV,; E(1<i<r)eR

Example: The vector (3,4) is a linear combination of
(1,0) and (0, 1) in R2.
Note that

(3,4) =2(1,1) + (1,2).
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Linear combination: Let VV be a vector space and
Vi,Vso,...,V, € V. Then a vector w € V is said to be
a linear combination of vi,v,, ... v, if

W=FKV+kVo+---+kV,; E(1<i<r)eR

Example: The vector (3,4) is a linear combination of
(1,0) and (0, 1) in R2.
Note that

(3,4) =2(1,1) + (1,2).

Thus, (3,4) is a linear combination of (1,1) and (1, 2)
also.
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Span of a set: Let S be a nonempty subset of a
vector space V. Then the span of S is the set of all
possible (finite) linear combinations of the vectors in
S and it is denoted by span(\5)
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Span of a set: Let S be a nonempty subset of a
vector space V. Then the span of S is the set of all
possible (finite) linear combinations of the vectors in
S and it is denoted by span(.S) i.e. if

S ={vy,Vs,...,V;}, then
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Span of a set: Let S be a nonempty subset of a
vector space V. Then the span of S is the set of all
possible (finite) linear combinations of the vectors in
S and it is denoted by span(.S) i.e. if

S ={vy,Vs,...,V;}, then

span(S) = {aVi + -+ apVi | a; € R, 1 < i <k}
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Span of a set: Let S be a nonempty subset of a
vector space V. Then the span of S is the set of all
possible (finite) linear combinations of the vectors in
S and it is denoted by span(.S) i.e. if

S ={vy,Vs,...,V;}, then

span(S) = {aVi + -+ apVi | a; € R, 1 < i <k}

@ For a subset S = {(1,0),(0,1)} of R?, we have
span(sS)
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Span of a set: Let S be a nonempty subset of a
vector space V. Then the span of S is the set of all
possible (finite) linear combinations of the vectors in
S and it is denoted by span(.S) i.e. if

S ={vy,Vs,...,V;}, then

span(S) = {aVi + -+ apVi | a; € R, 1 < i <k}

@ For a subset S = {(1,0),(0,1)} of R?, we have
span(S) = R2
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Span of a set: Let S be a nonempty subset of a
vector space V. Then the span of S is the set of all
possible (finite) linear combinations of the vectors in
S and it is denoted by span(.S) i.e. if

S ={vy,Vs,...,V;}, then

span(S) = {aVi + -+ apVi | a; € R, 1 < i <k}

@ For a subset S = {(1,0),(0,1)} of R?, we have
span(S) = R2

@ Forasubset S ={(1,0,0),(0,1,0),(0,0,1)} of
R3, we have span(S)
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Span of a set: Let S be a nonempty subset of a
vector space V. Then the span of S is the set of all
possible (finite) linear combinations of the vectors in
S and it is denoted by span(.S) i.e. if

S ={vy,Vs,...,V;}, then

span(S) = {aVi + -+ apVi | a; € R, 1 < i <k}

@ For a subset S = {(1,0),(0,1)} of R?, we have
span(S) = R2

@ Forasubset S ={(1,0,0),(0,1,0),(0,0,1)} of
R?, we have span(S) = R3.
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I
Exercise: Let V =R*and S = {(1,0,0), (0,1,0)}.
@ Find span(S).
@ Do (3,2,0) and (2,5, 1) belong to span(.S)?
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I
Exercise: Let V =R*and S = {(1,0,0), (0,1,0)}.
@ Find span(S).
@ Do (3,2,0) and (2,5, 1) belong to span(.S)?

Solution:

a(1,0,0) + b(0,1,0) | a,b € R}

span(s) = {
{(a,b,0) | a,b e R}

Clearly, (3,2,0) € span(S) but (2,5,1) & span(5).

In this exercise note that span(sS) is a subspace of
R3.
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Exercise: Let V =R*and S = {(1,0,0), (0,1,0)}.
@ Find span(S).
@ Do (3,2,0) and (2,5, 1) belong to span(.S)?

Solution:

span(.S)

{a(1,0,0) + b(0,1,0) | a,b € R}
{(a,b,0) | a,b e R}
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@ Find span(S).
@ Do (3,2,0) and (2,5, 1) belong to span(.S)?

Solution:

span(.S)

{a(1,0,0) + b(0,1,0) | a,b € R}
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I
Exercise: Let V =R*and S = {(1,0,0), (0,1,0)}.
@ Find span(S).
@ Do (3,2,0) and (2,5, 1) belong to span(.S)?

Solution:

span(S) = {a(1,0,0) +5b(0,1,0) | a,b € R}

{
{(a,b,0) | a,b e R}

Clearly, (3,2,0) € span(S) but (2,5,1) & span(5).

In this exercise note that span(S) is a subspace of
R3.
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Exercise: Let vy, Vv, be in a vector space V. Then
show that W = span{vy, v,} is a subspace of V.
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Exercise: Let vy, Vv, be in a vector space V. Then
show that W = span{vy, v,} is a subspace of V.

Theorem Let S = {vy,Vv,,...,V,.} be a nonempty
subset of a vector space V. Then

@ span(S) is a subspace of V.

@ span(S) is the smallest subspace of V/
containing S.

Convention: span(f)) = {0}.
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Exercise: Determine whether the vectors
v, =(1,2,3),vo = (2,0,0) and v5 = (—2,1,0) span
the vector space R3.
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Exercise: Determine whether the vectors
v, =(1,2,3),vo = (2,0,0) and v5 = (—2,1,0) span
the vector space R3.

Solution: Let S = {vy, vy, v3}. Clearly, by definition
of span(S), we have span(S) C R?.
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Exercise: Determine whether the vectors
v, =(1,2,3),vo = (2,0,0) and v5 = (—2,1,0) span
the vector space R3.

Solution: Let S = {vy, vy, v3}. Clearly, by definition
of span(S), we have span(S) C R?. In order to check
span(S) = R?, we have to check whether R? is
subset of span(S) or not.
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Exercise: Determine whether the vectors
v, =(1,2,3),vo = (2,0,0) and v5 = (—2,1,0) span
the vector space R3.

Solution: Let S = {vy, vy, v3}. Clearly, by definition
of span(S), we have span(S) C R?. In order to check
span(S) = R?, we have to check whether R? is
subset of span(S) or not.

Let (a, b, c) be an arbitrary element of R3. We must
check whether (a, b, ¢) belongs to span(.S) or not
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Exercise: Determine whether the vectors
v, =(1,2,3),vo = (2,0,0) and v5 = (—2,1,0) span
the vector space R3.

Solution: Let S = {vy, vy, v3}. Clearly, by definition
of span(S), we have span(S) C R?. In order to check
span(S) = R?, we have to check whether R? is
subset of span(S) or not.

Let (a, b, c) be an arbitrary element of R3. We must
check whether (a, b, ¢) belongs to span(S) or not i.e.
whether there exists k1, ks, k3 € R such that

(CL, b7 C) - k1(17 27 3) + k2(27 07 0) + k3(_27 _17 O)
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This is equivalent to check whether the system of
equations

/{:1+2/€2—2k3:a
2k1 — ks =10
3]€1 =cC
is consistent for any a, b, c € R.
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This is equivalent to check whether the system of
equations

/{:1—|—2/€2—2k3:a
2k1 — ks =10
3]€1 =cC
is consistent for any a, b, c € R.

Note that the reduced row echelon form of the
coefficient matrix
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This is equivalent to check whether the system of
equations

/{:1—|—2/€2—2k3:a
2k1 — ks =10
3]€1 =cC
is consistent for any a, b, c € R.

Note that the reduced row echelon form of the
coefficient matrix

Vikendra Singh Linear Algebra (GE-2) 31/93



This is equivalent to check whether the system of
equations
/{:1—|—2/€2—2k3:a
2k1 — k3 =10
3k =c
is consistent for any a, b, c € R.

Note that the reduced row echelon form of the
coefficient matrix
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Thus, the above system is consistent for any
a,b,c € R. Hence, span(S) = R?.
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Thus, the above system is consistent for any
a,b,c € R. Hence, span(S) = R?.

Exercise Determine whether the vectors
V) = (37 27 4)7\’2 = (_37 _17 0)7"3 = (07 17 4) and
vy = (0,2,8) span the vector space R®.
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Thus, the above system is consistent for any
a,b, c € R. Hence, span(S) = R°.

Exercise Determine whether the vectors
V) = (37 27 4)7\’2 = (_37 _17 0)7"3 = (07 17 4) and
vy = (0,2,8) span the vector space R®.

Hint: By the similar argument, used in previous
exercise, one should check whether the system of
equations
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3k1—3k2:a
2k1 — ko + k3 +2ky = b
4]€1+4k3+8k426

is consistent for any a, b, c € R.
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3k1—3k2:a
2k1 — ko + k3 +2ky = b
4]€1+4k3+8k426

is consistent for any a, b, c € R.

Now show that the reduced row echelon form of the
augmented matrix

A~ N
O~ W
NS
oo N O
o o
7
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3k1—3k2:a
2k1 — ko + k3 +2ky = b
4]€1+4k3+8k426

is consistent for any a, b, c € R.

Now show that the reduced row echelon form of the
augmented matrix

is

=N W
O = W
~ = O
oo N O
o o
O O =
o~ O

12
1 2 — &
0 0 4a—12b+ 3¢
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Since the system is not consistent for all choices of
(a,b,c) € R%. Hence, span(S) # R5.
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Since the system is not consistent for all choices of
(a,b,c) € R%. Hence, span(S) # R5.

Note that the vector (0,0, 1) € R? but it is not in
span(5).
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Lecture 4

Vikendra Singh Linear Algebra (GE-2) 35/93



Linear Independence
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Linear Independence

Definition: A subset S = {vy,v,,...,Vv,} of a vector
space V is said to be linearly dependent (LD) if there
exist real numbers aq, as, .. ., a,, not all zero such that

a1Vi + asVy + - - - + a,V,, = 0.
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Linear Independence

Definition: A subset S = {vy,v,,...,Vv,} of a vector
space V is said to be linearly dependent (LD) if there
exist real numbers aq, as, .. ., a,, not all zero such that

aV, + asVy + - - - + a,V,, = 0.

S is linearly independent (LI) if it is not linearly
dependent
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Linear Independence

Definition: A subset S = {vy,v,,...,Vv,} of a vector
space V is said to be linearly dependent (LD) if there
exist real numbers aq, as, .. ., a,, not all zero such that

a1Vi + asVy + - - - + a,V,, = 0.

S is linearly independent (LI) if it is not linearly
dependent i.e. if

aVy +asVo + -+ +a,V, =0

Then

ap=ay=---=a, =0.
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Examples

@ The subset S = {(1,0),(0,1)} of R?is
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Examples

@ The subset S = {(1,0), (0,1)} of R?is linearly
independent.
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Examples

@ The subset S = {(1,0), (0,1)} of R?is linearly
independent.

@ The subset S = {(1,2), (5,10)} of R? is
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Examples

@ The subset S = {(1,0), (0,1)} of R?is linearly
independent.

@ The subset S = {(1,2), (5,10)} of R? is linearly
dependent.
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Examples

@ The subset S = {(1,0), (0,1)} of R?is linearly

independent.

@ The subset S = {(1,2), (5,10)} of R? is linearly
dependent.

@ The subset S = {(1,0,0), (0,1,0), (0,0,1)} of R
is
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Examples

@ The subset S = {(1,0), (0,1)} of R?is linearly
independent.

@ The subset S = {(1,2), (5,10)} of R? is linearly
dependent.

@ The subset S = {(1,0,0), (0,1,0), (0,0,1)} of R?
is linearly independent.

Vikendra Singh Linear Algebra (GE-2)



I
@ The singleton set containing 0 € V i.e. {0}

Vikendra Singh Linear Algebra (GE-2) 38/93



@ The singleton set containing 0 € V i.e. {0} is
LD.
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@ The singleton set containing 0 € V i.e. {0} is
LD.

@ Forv # 0 of V, the set {v}
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@ The singleton set containing 0 € V i.e. {0} is
LD.

@ Forv # 0 of V, the set {v} is LI.
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@ The singleton set containing 0 € V i.e. {0} is
LD.

@ Forv # 0 of V, the set {v} is LI.
@ Any set containing zero vector is
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@ The singleton set containing 0 € V i.e. {0} is
LD.

@ Forv # 0 of V, the set {v} is LI.
@ Any set containing zero vector is LD.
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I
@ The singleton set containing 0 € V i.e. {0} is
LD.
@ Forv # 0 of V, the set {v} is LI.
@ Any set containing zero vector is LD.

@ Let S = {vy,Vv,} be a set of nonzero vectors of
V. Then S is linearly dependent iff one vector is
a scalar multiple of the other.
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I
@ The singleton set containing 0 € V i.e. {0} is
LD.
@ Forv # 0 of V, the set {v} is LI.
@ Any set containing zero vector is LD.

@ Let S = {vy,Vv,} be a set of nonzero vectors of
V. Then S is linearly dependent iff one vector is
a scalar multiple of the other.

@ Let S be a finite set of nonzero vectors having at
least two elements. Then S is LD if and only if
some vector in S can be expressed as a linear
combination of the other vectors in S.
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I
Example: Show that

S ={(3,1,-1),(=5,-2,2),(2,2,—1)}

is linearly independent subset of R3.
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I
Example: Show that

S ={(3,1,-1),(=5,-2,2),(2,2,—1)}

is linearly independent subset of R3.
Solution: Let a, b, ¢ € R such that

a(3,1,—1) +b(=5,-2,2) + ¢(2,2,-1) =0
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I
Example: Show that

S ={(3,1,-1),(=5,-2,2),(2,2,—1)}

is linearly independent subset of R3.
Solution: Let a, b, ¢ € R such that

a(3,1,—1) +b(=5,-2,2) + ¢(2,2,-1) =0

(3a,a,—a) + (—5b, —2b, 20) + (2¢, 2¢, —c) = (0,0, 0)
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I
Example: Show that

S ={(3,1,-1),(=5,-2,2),(2,2,—1)}

is linearly independent subset of R3.
Solution: Let a, b, ¢ € R such that

a(3,1,—1) + b(—5, —2,2) + (2,2, —1) = 0
(3a,a,—a) + (—5b, —2b, 20) + (2¢, 2¢, —c) = (0,0, 0)
(30 — 5b+ 2¢,a — 2b + 2¢, —a + 2b — ¢) = (0,0, 0)
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To find a, b, c € R, we need to solve the following
homogenous system:
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To find a, b, c € R, we need to solve the following
homogenous system:

3a—5b+2¢c=0
a—2b+2c=0
—a+2b—c=0
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NSNS
To find a, b, c € R, we need to solve the following
homogenous system:

3a—5b+2c=0
a—2b+2c=0
—a+2b—c=0

To solve above homogenous system, write
augmented matrix
3 =5 20
[AO=| 1 -2 20
-1 2 —-10
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reduced row echelon form of [A 0] is

S O =
S = O
— o O
o OO

Thus, we have a = 0,0 =0,¢c = 0.
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L
reduced row echelon form of [A 0] is

S O =
S = O
— o O
o OO

Thus, we have a = 0,b = 0,c = 0. Hence, S is
linearly independent subset of R?.
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Exercise: For a given vector space VV and a given
subset S of V, check the linear independence of S in
the following:

Q@ V="05={(z—-2)72*— 4z, 12}.
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Exercise: For a given vector space VV and a given
subset S of V, check the linear independence of S in
the following:

Q@ V="05={(z—-2)72*— 4z, 12}.
QV="rS={1+z,0+2%1+ 2%}
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Exercise: For a given vector space VV and a given
subset S of V, check the linear independence of S in
the following:

Q@ V="nr8={(z-2)?22*—4x,12}.
QV="PrS={1+zz+2*1+2%}.
QVv=r,S={1lz2%. . . 2"
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Exercise: For a given vector space VV and a given
subset S of V, check the linear independence of S in
the following:

Q@ V="nr8={(z-2)?22*—4x,12}.
QV="rS={1+z,0+2%1+ 2%}
QVv=r,S={1lz2%. . . 2"

o voms={[L [0 [0 )
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Exercise: For a given vector space VV and a given
subset S of V, check the linear independence of S in
the following:

Q@ V="nr8={(z-2)?22*—4x,12}.
QV="rS={1+z,0+2%1+ 2%}
QVv=r,S={1lz2%. . . 2"

o voms={[L [0 [0 )
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Theorem: If S is any subset of R" containing r
distinct vectors, where r > n, then S is linearly
dependent.
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Theorem: If S is any subset of R" containing r
distinct vectors, where r > n, then S is linearly
dependent.

Exercise: Examine the linear independence of a
subset S = {(2,-5,1),(1,1,—-1),(0,2,-3),(2,2,6)}
of R3.
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Lecture 5
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Coordinates and Basis
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Coordinates and Basis

Definition: A finite subset S = {vy,v,,...,v,} of a
vector space V is said to be a basis of V' if

@ Sisll and
@ span(s) =V.
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Examples

@ The subset S = {(1,0),(0,1)} = {ej,ex} isa
basis of R* as B is LI and span(S) = R
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Examples
@ The subset S = {(1,0),(0,1)} = {e1,ex} isa

basis of R* as B is LI and span(S) = R%.The
subset S is called the standard basis of R2.
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Examples

@ The subset S = {(1,0),(0,1)} = {ej,ex} isa
basis of R* as B is LI and span(S) = R%.The
subset S is called the standard basis of R>.

@ The subset S = {(1,0,0), (0,1,0),(0,0,1)}, also
denoted by {e1, es, 3}, is a basis of R? as it is LI
and span(S) = R3.
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Examples

@ The subset S = {(1,0),(0,1)} = {ej,ex} isa
basis of R* as B is LI and span(S) = R%.The
subset S is called the standard basis of R>.

@ The subset S = {(1,0,0), (0,1,0),(0,0,1)}, also
denoted by {e1, es, 3}, is a basis of R? as it is LI
and span(S) = R3. The subset S is called the
standard basis of R3.
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Examples

@ The subset S = {(1,0),(0,1)} = {ej,ex} isa
basis of R* as B is LI and span(S) = R%.The
subset S is called the standard basis of R>.

@ The subset S = {(1,0,0), (0,1,0),(0,0,1)}, also
denoted by {e1, es, 3}, is a basis of R? as it is LI
and span(S) = R3. The subset S is called the
standard basis of R3.

Analogously, S = {ey,es,...,e,} be a standard basis
of R”, where ¢; is a vector of R” such that its it
component is 1 and remaining components are 0.
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.
Think about some more basis of R? and R?.
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.
Think about some more basis of R? and R?.

Exercise: Examine whether the subset
S ={(4,1),(—7,-8)} is a basis of R??.
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.
Think about some more basis of R? and R?.

Exercise: Examine whether the subset
S ={(4,1),(—7,-8)} is a basis of R??.

Example: Show that the vectors v; = (1,2,1),
vy = (2,9,0) and v; = (3, 3,4) form a basis of R®.
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@ The subset S = {1,z,2%, ...,2"} is a basis of P,
as S is LI (verify!) and span(S) = P, (verify!).
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@ The subset S = {1,z,2%, ...,2"} is a basis of P,
as S is LI (verify!) and span(S) = P, (verify!).
The set S is called the standard basis of P,.
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@ The subset S = {1,z,2%, ...,2"} is a basis of P,
as S is LI (verify!) and span(S) = P, (verify!).
The set S is called the standard basis of P,.

@ The subset

s={l B BB )

is a basis of M.

Vikendra Singh Linear Algebra (GE-2) 48/93



@ The subset S = {1,z,2%, ...,2"} is a basis of P,
as S is LI (verify!) and span(S) = P, (verify!).
The set S is called the standard basis of P,.

@ The subset

s={l B BB )

is a basis of My,. The set S is called the
standard basis of )Ms,.

Verify that S is LI and span(.S) = Mas.
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Theorem: If S = {vy,v,,...,Vv,} is a basis for a
vector space V/, then every vector v in V can be
expressed in the form v = ¢;Vy + Vo + - - - + ¢, V,, IN
exactly one way.

Vikendra Singh Linear Algebra (GE-2) 49/93



Theorem: If S = {vy,v,,...,Vv,} is a basis for a
vector space V/, then every vector v in V can be
expressed in the form v = ¢;Vy + Vo + - - - + ¢, V,, IN
exactly one way.

Definition: If S = {v;,v,,...,v,} is a basis for a
vector space V, and
V=cV|y +cVo+ -+, Vy,

then the scalars ¢q, 9, . . ., ¢, are called coordinates
of v relative to the basis S.
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The vector (¢, co, ..., ¢,) € R” constructed from
these coordinates is called the coordinate vector of
v relative to S; it is denoted by
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The vector (¢, co, ..., ¢,) € R” constructed from
these coordinates is called the coordinate vector of
v relative to S; it is denoted by

(V)s = (c1,¢0,...,¢p)
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The vector (¢, co, ..., ¢,) € R” constructed from
these coordinates is called the coordinate vector of
v relative to S; it is denoted by

(V)s = (c1,¢0,...,¢p)

Remark: Sometime we shall write a coordinate
vector as column matrix and in that case it will be
denoted by [v]g
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The vector (¢, co, ..., ¢,) € R” constructed from
these coordinates is called the coordinate vector of
v relative to S; it is denoted by

(V)s = (c1,¢0,...,¢p)

Remark: Sometime we shall write a coordinate
vector as column matrix and in that case it will be
denoted by [v]g i.e.

C1
C2
V]s =

Cn
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Exercise: Find the coordinate vector of the
polynomial p = 3 — x — 22 relative to the basis
S={1+z,1+2*x+2?}.
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Exercise: Find the coordinate vector of the
polynomial p = 3 — = — 222 relative to the basis
S={14uz1+2%z+ 2%}

Solution: Consider
3—x—20%= c(1+2)+ (142 + c3(x + 22)
= (c1+¢) + (1 +c3)x + (e + c3)2?
This leads to solve the system of equations

c1+co=3
c1+c3=—1
co+c3=—2



.
Exercise: Find the coordinate vector of the
polynomial p = 3 — x — 22 relative to the basis
S={1+uxz1+2%z+ 2%}
Solution: Consider
3—x—20%= c(1+2)+ (142 + c3(x + 22)
= (c1+¢) + (1 +c3)x + (e + c3)2?
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NSNS
Exercise: Find the coordinate vector of the
polynomial p = 3 — x — 22 relative to the basis
S={14uz1+2%z+ 2%}

Solution: Consider
3—x—20%= c(1+2)+ (142 + c3(x + 22)
= (c1+¢) + (1 +c3)x + (e + c3)2?
This leads to solve the system of equations
Cc1+ co = 3
C1 + C3 = —1
Co + C3 = —2
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I
On solving, we get ¢; = 2,5 = 1,¢3 = —3.
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I
On solving, we get ¢; = 2,3 = 1,¢3 = —3. Thus,

(p)S - (27 L, _3)
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Lecture 6
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Definition: A vector space that can be spanned by
finitely many vectors is said be finite dimensional.
Otherwise, it is called infinite dimensional.
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Definition: A vector space that can be spanned by
finitely many vectors is said be finite dimensional.
Otherwise, it is called infinite dimensional.

Example: The vector spaces R", P, and M,,, are
finite dimensional,
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Definition: A vector space that can be spanned by
finitely many vectors is said be finite dimensional.
Otherwise, it is called infinite dimensional.

Example: The vector spaces R", P, and M,,, are
finite dimensional, whereas the vector space P, is
infinite dimensional.
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Theorem: Let V' be a finite dimensional vector
space, and let {vy,v,,... v, } be any basis

Vikendra Singh Linear Algebra (GE-2) 55/93



Theorem: Let V' be a finite dimensional vector
space, and let {vy,v,,... v, } be any basis

@ If a set has more than n vectors, then it is
linearly dependent.

Vikendra Singh Linear Algebra (GE-2) 55/93



I
Theorem: Let V' be a finite dimensional vector
space, and let {vy,v,,... v, } be any basis

@ If a set has more than n vectors, then it is
linearly dependent.

@ If a set has fewer than n vectors, then it does not
span V.

Vikendra Singh Linear Algebra (GE-2) 55/93



I
Theorem: Let V' be a finite dimensional vector
space, and let {vy,v,,... v, } be any basis

@ If a set has more than n vectors, then it is
linearly dependent.

@ If a set has fewer than n vectors, then it does not
span V.

Theorem: All bases for a finite dimensional vector
space have the same number of elements.
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Definition: The dimension of a finite dimensional
vector space V' is the number of elements in a basis
of V
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Definition: The dimension of a finite dimensional
vector space V' is the number of elements in a basis
of V and it is denoted by dim(V).
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Definition: The dimension of a finite dimensional
vector space V' is the number of elements in a basis
of V and it is denoted by dim(V).

The dimension of the zero vector space {0} is
defined to be zero.
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Examples

@ dim(R?) = 2.
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Examples

@ dim(R?)
@ dim(R?)

I
Lo

Vikendra Singh Linear Algebra (GE-2) 57 /93



Examples

@ dim(R?)
@ dim(R?)
@ dim(R")

I
S * N
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Examples
@ dim(R?) =2
@ dim(R?%) =3
@ dim(R") = n.
@ dm(P,) =n+ 1.
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Examples
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I
Theorem: Let S be a nonempty set of vectors in a
vector space V.

@ If Sis a linearly independent and v € V' such
that v ¢ span(S), then S; = SU {v} is a linearly
independent set.
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I
Theorem: Let S be a nonempty set of vectors in a
vector space V.

@ If Sis a linearly independent and v € V' such
that v ¢ span(S), then S; = SU {v} is a linearly
independent set.

@ If v € S such that it can be expressible as a
linear combination of other vectors in S, then

span(S) = span(S — {v}).
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Theorem: Let V' be an n-dimensional vector space,
and let S be a set in V with exactly n vectors.

@ Sis abasis of V if and only if S spans V.

Vikendra Singh Linear Algebra (GE-2) 59/93



I
Theorem: Let V' be an n-dimensional vector space,
and let S be a set in V with exactly n vectors.

@ Sis abasis of V if and only if S spans V.

@ Sis abasis of V if and only if S is linearly
independent.
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Exercise: For a given vector space V and a given
subset S of V, determine which of following S form a
basis of the respective vector space V':
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Exercise: For a given vector space V and a given
subset S of V, determine which of following S form a
basis of the respective vector space V':

Q@ V=R}S={31-1),(-5-2,2),(2,2,—1)}.
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Exercise: For a given vector space V and a given
subset S of V, determine which of following S form a
basis of the respective vector space V':

Q@ V=R}S={31-1),(-5-2,2),(2,2,—1)}.
Q@ V=RS={71,20),(80,1,-1)}.
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Exercise: For a given vector space V and a given
subset S of V, determine which of following S form a
basis of the respective vector space V':

Q@ V=RS={31-1),(-5-2,2),(2,2, —1)}.
e V = R4,S = {(77 17270)7 (8707 17_1)}
QV="~rS={1+z,2+2%1+ 2%}
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Exercise: For a given vector space V and a given
subset S of V, determine which of following S form a
basis of the respective vector space V':

Q@ V=R}S={31-1),(-5-2,2),(2,2,—1)}.
Q@ V=RS={71,20),(80,1,-1)}.
QV="Pr5S={1+zx+2*1+2%}.
QVv="~rS={1-z,0—2%1-27}
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Exercise: For a given vector space V and a given
subset S of V, determine which of following S form a
basis of the respective vector space V':

Q@ V=R}S={31-1),(-5-2,2),(2,2,—1)}.
Q@ V=RS={71,20),(80,1,-1)}.
QV="Pr5S={1+zx+2*1+2%}.
QVv="~rS={1-z,0—2%1-27}
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Lecture 7
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Example: Find a basis and the dimension of a
subspace W of R3, where

W ={(z,y,2) e R®| x4+ 2z =0}.
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Example: Find a basis and the dimension of a
subspace W of R3, where

W ={(z,y,2) € R* |z + 22 = 0}.

Solution: The general solution of the equation
r+ 2z =0is given by {(—2s,t,s) | t,s € R}. Thus

W ={(-2s,t,s) | t,s € R}
W ={s(—2,0,1) +¢(0,1,0) | t,s € R}
W =span ({(—2,0,1),(0,1,0)}).

Note that the set {(—2,0, 1), (0,1,0)} is linearly
independent (show it).



Example: Find a basis and the dimension of a
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W ={(z,y,2) € R* |z + 22 = 0}.

Solution: The general solution of the equation
r+ 2z =0is given by {(—2s,t,s) | t,s € R}. Thus

W ={(-2s,t,s) | t,s € R}
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independent (show it).



Example: Find a basis and the dimension of a
subspace W of R3, where

W ={(z,y,2) € R* |z + 22 = 0}.

Solution: The general solution of the equation
r+ 2z =0is given by {(—2s,t,s) | t,s € R}. Thus

W ={(-2s,t,s) | t,s € R}

Note that the set {(—2,0, 1), (0,1,0)} is linearly
independent (show it).



Example: Find a basis and the dimension of a
subspace W of R3, where

W ={(z,y,2) € R* |z + 22 = 0}.

Solution: The general solution of the equation
xr+ 2z =01Is given by {(—2s,t,s) | t,s € R}. Thus

W ={(-2s,t,s) | t,s € R}
W ={s(—2,0,1) +¢(0,1,0) | t,s € R}
W =span ({(—2,0,1),(0,1,0)}).

Note that the set {(—2,0, 1), (0,1,0)} is linearly
independent (show it).
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Hence, the subset {(—2,0,1),(0,1,0)} is a basis of
W and dim(W) = 2.
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Hence, the subset {(—2,0,1),(0,1,0)} is a basis of
W and dim(W) = 2.

Exercise: Find a basis and the dimension of a
subspace W of P;, where

W={pePrs|p2) =0}
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Exercise: Find a basis for the solution space of the
following homogenous linear system

r+2y—z2=0
20 —y+22=0
r+y+2z2=0

dr + 3y =0

Hence, find the dimension of the solution space.

Hint: First find the solution set S of given
homogenous system of equations

Vikendra Singh Linear Algebra (GE-2) 64 /93



Exercise: Find a basis for the solution space of the
following homogenous linear system

r+2y—z2=0
20 —y+22=0
r+y+2z2=0

dr + 3y =0

Hence, find the dimension of the solution space.

Hint: First find the solution set S of given
homogenous system of equations and observe that

—3 4
—Jt(=,2,1) s teRr
=1 (55) e
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S = span{<?
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3
S = span{<?

and {(2%,3,1)} is LI

5
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o212}

and {(2,4,1)} is LI (why?).

5

O‘!Ir-lk
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con((240)

and {(2%,3,1)} is LI (why?). Thus,
a basis of solution space and dlm(

\C_gf—H
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o (341)

and {(2%,3,1)} is LI (why?). Thus, {(3%,3,1)} forms
a basis of solution space and dim(S) = 1.
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Exercise: Let S = {(4,2,1),(2,6,-5),(1,—2,3)} be
a subset of vector space R3.
@ Examine the linear independence of S.
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Exercise: Let S = {(4,2,1),(2,6,-5),(1,—2,3)} be
a subset of vector space R3.

@ Examine the linear independence of S.

@ Find dim(span(s)).
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I
Exercise: Let S = {(4,2,1),(2,6,-5),(1,—2,3)} be
a subset of vector space R3.
@ Examine the linear independence of S.
@ Find dim(span(s)).
Hint:
@ Let

a1(4, 2, 1)+a2(2, 6, —5)—|—CL3(1, —2, 3) =0= (O, 0, O)
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Exercise: Let S = {(4,2,1),(2,6,-5),(1,—2,3)} be
a subset of vector space R3.

@ Examine the linear independence of S.

@ Find dim(span(s)).

Hint:
@ Let

a1(4, 2, 1)+a2(2, 6, —5)—|—CL3(1, —2, 3) =0= (O, 0, O)
On solving above system of equations, we get
a)p = —1 , A9 = 1 , a3 = 2

implies S is not LI.
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I
@ Note that

(2,6,—5) = (4,2,1) — 2(1, -2, 3)
implies span(S) = span(S’), where
S'=1{(4,2,1),(1,-2,3)}.

Now, note that S” is LI (Show it).
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I
@ Note that

(2,6,—5) = (4,2,1) — 2(1, -2, 3)
implies span(S) = span(S’), where
S'=1{(4,2,1),(1,-2,3)}.

Now, note that S’ is LI (Show it). Thus S’ (a set of
two elements) is a basis of span(.5)
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I
@ Note that

(2,6,—5) = (4,2,1) — 2(1, -2, 3)
implies span(S) = span(S’), where
S'=1{(4,2,1),(1,-2,3)}.

Now, note that S’ is LI (Show it). Thus S’ (a set of
two elements) is a basis of span(S) and

dim(span(5)) = 2.
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Theorem: Let W be a subspace of a finite
dimensional vector space V. Then
@ IV is also finite dimensional and dimi/ < dimV’.
@ dimWW =dimV ifand only if W = V.
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Lecture 8
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Subspaces associated with Matrices
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I
Subspaces associated with Matrices
Definition Let A be an m x n matrix.

@ The row space of A is the subspace row(A) of
R" spanned by the row vectors of A.
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I
Subspaces associated with Matrices

Definition Let A be an m x n matrix.

@ The row space of A is the subspace row(A) of
R" spanned by the row vectors of A.

@ The column space of A is the subspace col(A)
of R™ spanned by the column vectors of A.
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I
Subspaces associated with Matrices

Definition Let A be an m x n matrix.
@ The row space of A is the subspace row(A) of
R" spanned by the row vectors of A.

@ The column space of A is the subspace col(A)
of R™ spanned by the column vectors of A.

@ The null space of A is the subspace of R"
consisting of solutions of the homogenous linear
system Ax = 0. It is denoted by null(A).
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I
Exercise: Find a basis for the null space of

1 4 5 6 9
3 =2 1 4 -1
-1 0 -1 -2 -1
2 3 5 7 8

A:
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I
Exercise: Find a basis for the null space of

1 4 5 6 9
3 =2 1 4 -1
-1 0 -1 -2 -1
2 3 5 7 8

A:

Hint: Since

null(A) = {x: Ax =0}
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I
Exercise: Find a basis for the null space of

1 4 5 6 9
3 =2 1 4 -1
-1 0 -1 -2 -1
2 3 5 7 8

A:

Hint: Since
null(A) = {x: Ax =0}

On solving right hand side with the above matrix A,
we get
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null(A) ={(-r —2s—t,—r —s—2t,r,s,t): r,s,t € R}
= span(S), where

S ={(-1,-1,1,0,0),(-2,—-1,0,1,0),(—1,-2,0,0,1)}
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null(A) ={(-r —2s—t,—r —s—2t,r,s,t): r,s,t € R}
= span(S), where

S ={(-1,-1,1,0,0),(-2,—-1,0,1,0),(—1,-2,0,0,1)}
Also, show that S is linearly independent.
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null(A) ={(-r —2s—t,—r —s—2t,r,s,t): r,s,t € R}
= span(S), where

S ={(-1,-1,1,0,0),(-2,—-1,0,1,0),(—1,-2,0,0,1)}

Also, show that S is linearly independent. Thus S is
a basis for null(A).
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null(A) ={(-r —2s—t,—r —s—2t,r,s,t): r,s,t € R}
= span(S), where

S ={(-1,-1,1,0,0),(-2,—-1,0,1,0),(—1,-2,0,0,1)}

Also, show that S is linearly independent. Thus S is
a basis for null(A). Hence, dim(null(A)) = 3.
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Theorem: If a matrix R is in row echelon form, then
the row vector with the leading 1’s (the nonzero row
vectors) form a basis for the row space of R,
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Theorem: If a matrix R is in row echelon form, then
the row vector with the leading 1’s (the nonzero row
vectors) form a basis for the row space of R, and the
column vectors with the leading 1’s of the row vector
form a basis for the column space of R.
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Exercise: Find a basis for the row space and
column space of

1 -3 2 4
0 1 —1 0
A=10 0 1 3
0 0 0 1
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Exercise: Find a basis for the row space and
column space of

1 -3 2 4
0 1 —1 0
A=10 0 1 3
0 0 0 1

Solution: Since given matrix is in row echelon form.
By Theorem, the set of row vectors

{(1,-3,2,4),(0,1,-1,0),(0,0,1,3),(0,0,0,1)}
forms a basis of row(A), and the vectors
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4
—1 0
3
1

form a basis of col(A).

Vikendra Singh Linear Algebra (GE-2) 75/93



Lecture 9
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I
Exercise: Find a basis for the row space

1 4 5 6 9
3 =2 1 4 -1
-1 0 -1 -2 -1
2 3 5 7 8

A=
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I
Exercise: Find a basis for the row space

1 4 5 6 9
3 =2 1 4 -1
-1 0 -1 -2 -1
2 3 5 7 8

A=

Solution: Let B be the RREF of the given matrix.
Then find that

10121
01112
B_OOOOO
000O00O0

Vikendra Singh Linear Algebra (GE-2) 77193



I
Since B is row equivalent to A, we have

row(B) = row(A).
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I
Since B is row equivalent to A, we have

row(B) = row(A).
Thus, By Theorem, the set of row vectors
{(1,0,1,2,1),(0,1,1,1,2)}

is a basis of row(A).
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I
Example: Let S = {vy, Vs, V3, Vs}, where

vi = (1,2,3,—1,0), Vo = (3,6,8,—2,0)

vy =(—1,-1,-3,1,1), vy = (—2,—3,—5,1,1)
be a subset of R>.
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I
Example: Let S = {vy, Vs, V3, Vs}, where

vi = (1,2,3,—1,0), Vo = (3,6,8,—2,0)

vi = (—1,-1,-3,1,1), vy = (-2, -3, -5,1,1)
be a subset of R®. Find a basis for span(sS).
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I
Example: Let S = {vy, Vs, V3, Vs}, where

vi = (1,2,3,—1,0), Vo = (3,6,8,—2,0)

vi = (—1,-1,-3,1,1), vy = (-2, -3, -5,1,1)
be a subset of R®. Find a basis for span(sS).

Solution:
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Example: Let S = {vy, Vs, V3, Vs}, where
vi =(1,2,3,—1,0), vy = (3,6,8,—2,0)

vi = (—1,-1,-3,1,1), vy = (-2, -3, -5,1,1)
be a subset of R®. Find a basis for span(sS).

Solution:
Step 1:
1 2 3 —-10
3 6 8 —20
A=17 41 3 1 1
2 -3 =5 1 1
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Step 2:

Vikendra Singh

RREF(A) =

Linear Algebra (GE-2)

80/93



Step 2:

RREF(A) =

Step 3:
B ={(1,0,0,2,-2),(0,1,0,0,1),(0,0,1,—1,0)}

is a basis for span(.S).
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Theorem : If A and B are row equivalent matrices,
then:

@ A given set of column vectors of A forms a basis
for the column space of A if and only if the
corresponding column vectors of B forms a
basis for the column space of B.
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I
Exercise: Find a basis for the column space

1 4 5 6 9
3 =2 1 4 -1
-1 0 -1 -2 -1
2 3 5 7 8

A=
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I
Exercise: Find a basis for the column space

1 4 5 6 9
3 =2 1 4 -1
-1 0 -1 -2 -1
2 3 5 7 8

A=

Solution: Let B be the RREF of the given matrix.
Then find that

10121
01112
B_OOOOO
000O00O0
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Since First and second column vector of B is a basis
for the col(B)(Why?).
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Since First and second column vector of B is a basis
for the col(B)(Why?). By Theorem 4.7.6, the set of
column vectors

{(1,3,-1,2),(4,—-2,0,3)}

is a basis of col(A).
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NSNS
Example: Let S = {vy, Vs, V3, V4, V5}, Where
vi=(1,2,—-21), Vo =(-3,0,—4,3)
vy =(2,1,1,-1), v4=(-3,3,-9,6)
and v; = (9,3,7,—6)
be a subset of R*,
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I
Example: Let S = {vy, Vs, V3, V4, V5}, Where
vi=(1,2,—-21), Vo =(-3,0,—4,3)
vy =(2,1,1,-1), v4=(-3,3,-9,6)
and v; = (9,3,7,—6)

be a subset of R*. Find a basis for span(s)
consisting all the vectors from S.
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I
Example: Let S = {vy, Vs, V3, V4, V5}, Where
vi=(1,2,—-21), Vo =(-3,0,—4,3)
vy =(2,1,1,-1), v4=(-3,3,-9,6)
and v; = (9,3,7,—6)

be a subset of R*. Find a basis for span(s)
consisting all the vectors from S.

Solution:
1 -3 2 -3 9
2 0 1 3 3
-2 -4 1 -9 7
1 3 -1 6 -6

A=
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10 1/2 3/2 3/2

01 —1/2 3/2 —5/2
RREF(4) = |0 | O/ (/) O/

00 0 0 0
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10 1/2 3/2 3/2
01 —1/2 3/2 —5/2
00 0 0 0
00 0 0 0

The set of vectors corresponding to pivot columns is

RREF(A) =

B={vi,v,} = {(1,2,-2,1),(~3,0, -4, 3)}
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10 1/2 3/2 3/2
01 —1/2 3/2 —5/2
00 0 0 0
00 0 0 0

The set of vectors corresponding to pivot columns is

RREF(A) =

B={vi,v,} = {(1,2,-2,1),(~3,0, -4, 3)}

forms a basis for the subspace span(.5).
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Lecture 10
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Rank and Nullity of a Matrix
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Rank and Nullity of a Matrix

Theorem: The row space and column space of a
matrix have the same dimension.

Vikendra Singh Linear Algebra (GE-2) 87/93



Rank and Nullity of a Matrix

Theorem: The row space and column space of a
matrix have the same dimension.

Definition: The common dimension of row(A) and
col(A) of a matrix A is called the rank of A and is
denoted by rank(A);
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Rank and Nullity of a Matrix

Theorem: The row space and column space of a
matrix have the same dimension.

Definition: The common dimension of row(A) and
col(A) of a matrix A is called the rank of A and is
denoted by rank(A);

@ dim(null(A)) is called the nullity of A and it is
denoted by nullity(A).
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I
Result: For any matrix A,

rank(A) = rank(AT).
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I
Exercise: Find the rank and nullity of the matrix

1 3 14
A=12 4 20
-1 -3 0 5
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Theorem (Dimension Theorem for Matrices): If A
is a matrix with n columns, then

rank(A) + nullity(A) =n
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Theorem: Let A be an n x n matrix. The following
statements are equivalent:

@ Ais invertible.
@ Ax = b has a unique solution for every b € R”.

@ The homogenous system Ax = 0 has only the
trivial solution.

@ The reduced row echelon form of A is I,,.

@ A is expressible as a product of elementary
matrices.

@ det(A) # 0.

@ The column vectors of A are linearly
independent.

@ The column vectors of A span R”.
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Theorem: (contd.)
@ The column vectors of A form a basis of R”.
@ The row vectors of A are linearly independent.
@ The row vectors of A span R".
@ The row vectors of A form a basis of R".
@ A has rank n.
@ A has nullity 0.
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(Conclusion)

@ Real Vector Spaces

@ Subspaces

@ Span

© Linear Independence

@ Basis and Dimension

©@ Row space, Column Space, and Null Space
@ Rank and Nullity of a Matrix
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Thank You
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